Łączenie się atomów. Równania reakcji chemicznych

20. Wiązanie kowalencyjne

Cele lekcji: Poznanie pojęć: *wiązanie chemiczne, wiązanie kowalencyjne, elektroujemność*. Poznanie mechanizmu powstawania wiązania kowalencyjnego. Określanie, w jakich związkach chemicznych występują wiązania kowalencyjne.

Na dobry początek

1 Zaznacz poprawne uzupełnienia zdań, tak aby powstały prawdziwe informacje.

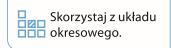
Podczas tworzenia się wiązania kowalencyjnego atomy łączą się za pomocą \mathbf{A} / \mathbf{B} . Dążą wówczas do uzyskania \mathbf{C} / \mathbf{D} lub \mathbf{E} / \mathbf{F} elektronowego, aby mieć konfigurację elektronową najbliższego \mathbf{G} / \mathbf{H} .

A. elektronów walencyjnych

C. dubletu

E. nonetu

G. gazu szlachetnego


B. wszystkich elektronów

D. tripletu

F. oktetu

H. pierwiastka chemicznego

2 Uzupełnij tabelę oraz odpowiedz na pytanie.

Nazwa pierwiastka chemicznego	Symbol pierwiastka chemicznego	Liczba elektronów walencyjnych	Symbol chemiczny gazu szlachetnego, do którego konfiguracji elektronowej dąży atom	Elektro- ujemność
chlor				
fosfor				
siarka				
wodór				

Atom którego z pierwiastków chemicznych wymienionych w tabeli może połączyć się z 3 atomami wodoru? **Narysuj wzory elektronowy i strukturalny oraz podaj nazwę tego związku chemicznego.**

Nazwa pierwiastka chemicznego:			
Wzór elektronowy:	Wzór strukturalny:		
Nazwa zwiazku chemicznego:			

3 Uzupełnij tabelę.

Wzór sumaryczny związku chemicznego	HCl	NH ₃	H ₂ S	CO ₂
Wzór elektronowy związku chemicznego				
Różnica elektroujemności				
Przesunięcie wspólnej pary elektronowej bliżej atomu	Cl			

4 Uzupełnij tabelę, wpisując nazwy substancji wybrane spośród podanych. Uzasadnij swój wybór.

woda • fluor • tlenek węgla(IV) • tlen • amoniak • jodowodór • azot • chlor

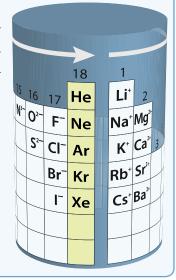
Wiązanie kowalencyjne				
niespolaryzowane	spolaryzowane			

 Uzasadnienie:
 W substancjach

 występują wiązania kowalencyjne niespolaryzowane, ponieważ

. Natomiast w substancjach

występują wiązania kowalencyjne spolaryzowane, ponieważ

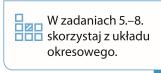

Jest na to sposób!

Ustalanie konfiguracji elektronowej

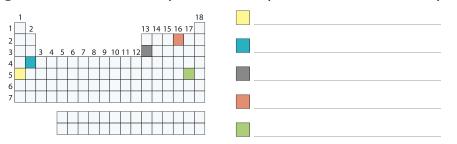
Atomy metali i niemetali tworzą jony, aby uzyskać **oktet** lub **dublet elektronowy**. Mają wtedy konfigurację gazu szlachetnego najbliższego im w układzie okresowym, tzn. pierwiastki początkowych grup układu

okresowego – gazu szlachetnego leżącego w poprzednim okresie (np. kation sodu ma konfigurację elektronową atomu neonu), a pierwiastki końcowych grup układu okresowego – gazu szlachetnego leżącego w tym samym okresie (np. anion chlorkowy ma konfigurację elektronową atomu argonu).

13	14	15 N		F	He Ne
		N			
			c	CI	Α.
			د	CI	Ar
				Br	Kr
				ı	Хe
					Br I


21. Wiązanie jonowe

Cele lekcji: Poznanie pojęć: *jon, kation, anion, wiązanie jonowe*. Poznanie mechanizmu powstawania wiązania jonowego. Określanie, w jakich związkach chemicznych występują wiązania jonowe.


Na dobry początek

5 Podkreśl wzory substancji, w których występuje wiązanie jonowe.

$H_2 \bullet 0$	CaCl ₂ •	HBr •	O ₂ •	$NaCl \bullet$	$CO_2 \bullet$	PH ₃	• F ₂ •	H_2S	• K ₂ O
-----------------	---------------------	-------	------------------	----------------	----------------	-----------------	--------------------	--------	--------------------

6 Napisz symbole chemiczne jonów, które mogą powstać z atomów pierwiastków chemicznych zaznaczonych na układzie okresowym.

- 7 Uzupełnij zapisy powstawania jonów tworzących związki chemiczne o podanych nazwach. Napisz wzory sumaryczne tych związków.
 - a) chlorek potasu

	\
V.	·Cl:
1/	• 🗘 1 •

K − 1e⁻ →

Cl_____

Wzór sumaryczny: ___

b) bromek wapnia

Obejrzyj animację docwiczenia.pl Kod: C77PZR

____ Wzór sumaryczny: _____

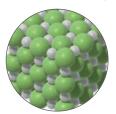
- 8 Uzupełnij tabele.
 - Symbol Liczba Ładunek chemiczny jonu protonów neutronów elektronów jonu

 S²
 19

 18

b)	Nazwa	Symbole pierwiastków	Liczb	a elektrono		Symbole	Wzór sumaryczny
	związku chemicznego	w związku chemicznym	walencyjnych	oddanych		jonów	związku chemicznego
	chlorek	Cl	7	0	1	Cl ⁻	Na Cl
	sodu	Na					NaCl
	siarczek magnezu						

22. Wpływ rodzaju wiązania na właściwości związku chemicznego


Cele lekcji: Poznanie wpływu rodzaju wiązania na właściwości związku chemicznego. Porównanie właściwości związków kowalencyjnych i jonowych.

Na dobry początek

9 Podkreśl poprawne uzupełnienia zdań.

Chlorek sodu powstaje w wyniku przeniesienia elektronów walencyjnych od atomów sodu do atomów chloru, zatem jest związkiem **kowalencyjnym** / **jonowym**. Cząsteczka amoniaku powstaje z atomów, które uwspólniają swoje elektrony, jest więc związkiem **kowalencyjnym** / **jonowym**. Siarczek magnezu jest zbudowany z kationów i anionów, jest więc związkiem **kowalencyjnym** / **jonowym**. Tlenek węgla(IV) występuje w gazowym stanie skupienia, jest więc związkiem **kowalencyjnym** / **jonowym**. Woda nie przewodzi prądu elektrycznego, gdyż jej cząsteczki są elektrycznie obojętne – jest to właściwość związków **kowalencyjnych** / **jonowych**.

10 Na modelach przedstawiono substancję kowalencyjną oraz substancję jonową. Podpisz modele oraz uzasadnij swoją decyzję.

Substancja	Substancja
Uzasadnienie:	

Li To doświadczenie musisz znać

Przeprowadzono doświadczenie chemiczne Badanie zjawiska przewodzenia prądu elektrycznego przez cukier i sól kuchenną rozpuszczone w wodzie. **Uzupełnij opis doświadczenia podanymi określeniami.**